Abstract

Virus-free populations of vector nematodes can acquire tomato black ring (TBRV), raspberry ringspot (RRV) and arabis mosaic (AMV) viruses from weed seedlings grown from virus-carrying seed. When soils from fields where nematode-borne viruses occurred naturally were air-dried to kill vector nematodes and then moistened, TBRV and RRV occurred commonly in the weed seedlings that grew, but AMV occurred only rarely. Similar tests did not detect tobacco ringspot, grapevine fanleaf or tobacco rattle viruses in weed seeds in the single soil studied in each instance, although these three viruses are also seed-borne in some of their hosts. Many weed species, when infected experimentally, readily transmit TBRV and RRV to their seed, but the viruses were much commoner in naturally occurring seed of some of these species than of others. These discrepancies between the frequency of seed-transmission of viruses from experimentally infected plants and the extent of natural occurrence of infected seed seem largely to reflect the host preferences of the vectors.
Infective Longidorus elongatus kept in fallow soil retained TBRV and RRV only up to 9 weeks. When weed seeds in the soil were then allowed to germinate, the nematodes reacquired virus from the infected seedlings. Some weed species were better than others as sources of virus. Persistence of these viruses in fields through periods of fallow or fasting of the vector therefore depends on a continuing supply of infected seedlings produced by virus-containing weed seeds. This is probably less true of viruses like AMV and grape vine fanleaf, which persist for 8 months or more in their vectors (Xiphinema spp.). A few seeds containing TBRV and RRV were found in soils free of vector nematodes, suggesting that the viruses are disseminated in weed seed. This probably explains how TBRV and RRV have reached a large proportion of L. elongatus populations in eastern Scotland.