Enhancing raspberry fruit quality

lannetta P, Stewart D, Jones C, Woodhead M, Deighton N, Wheatley R, Taylor M, McNicol R & Davies H

Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA Email pianne@scri.sari.ac.uk.

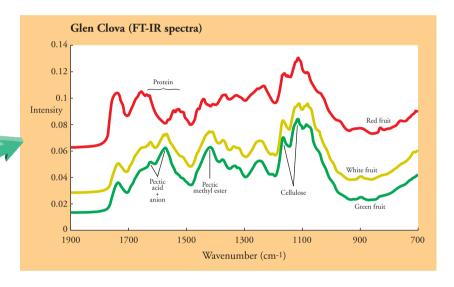
Introduction

- Successful fruit packaging relies upon the use of high quality produce.
- SCRI hopes to optimise raspberry fruit quality via focused research.
- We report on the physiology and molecular biology of raspberry fruit quality.

Ethylene and fruit firmness

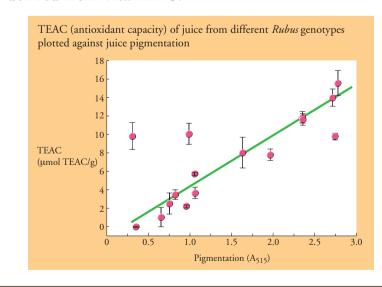
Ethylene plays a causal role in raspberry fruit ripening. Immature fruits exposed to 21vpm ethylene for 24h reddened and softened.

Cultivar	Ripeness class	Ethylene exposure	% CO ₂ (after 48 hours)	Firmness (mN)	Optical density (515nm)
Glen Prosen	2	Yes No	2.3 1.9	344 806	1.0 ± 0.3 0.2 ± 0.0
Glen Clova	2	Yes No	1.8 1.1	228 714	1.0 ± 0.3 0.2 ± 0.0
Anova					
Cultivar			***	*	NS
Ethylene exposur	re		***	***	***
	cantly different		*** Signif	icantly differ	rent at P < 0.01


Ethylene levels correlate with fruit firmness, receptacle weight and time to ripen.

Genotype	Relative fruit- firmness	Druplet firmness (mN)	Ethylene evolution (mg hr ⁻¹ g fw ⁻¹)	Time to ripen (days)	Receptacle fresh weight (g)
EM 5007	Soft	133 ^a	55.28 ^a	54.17°	0.58 ^a
Glen Clova	Soft	121 ^a	34.34^{b}	58.08 ^{b,c}	0.47 ^b
EM4997	Firm	191 ^b	20.01 ^c	$61.40^{a,b}$	0.51 ^b
Glen Prosen	Firm	210.3 ^b	23.35°	65.00^{a}	0.34°
a,b,c denotes anov	va categories for	significant differe	nces where P < 0.05		

Analysis of fruit cell-wall material using GC, FT-IR and NMR showed that pectic acid/anion, methylated ester and cellulose contents declined as fruit softened.


Cell-wall modifying enzyme activities increase as fruit mature.

Antioxidant capacity

Data indicates that the antioxidant capacity of ripe raspberry juice is high.

The majority of the antioxidant capacity is not derived from vitamin C.

Molecular biology

A method to extract high-quality RNA from ripe raspberry fruit was developed.

This has allowed the cloning of genes which are differentially expressed during ripening.

Rasp.clone	Length (bp's	Gene	Organism	Identity (%
RAS1	701	Major latex protein	Opium poppy	34
RAS2	535	Metallothionein-like protein-I	Kiwi fruit	82
RAS3	1208	Endo-polygalacturonase	Peach	76
Differential di	splay			
154	480	14-3-3 protein	Glycine	89
357	1077	ACC oxidase	White spruce	44
53s	407	Serine protease inhibitor	Bovine	35
155	445	Fumarylacetacetase	Human	64
cDNA-AFLP				
cDNA-AFLP	859	Pectin methylesterase	Campion	74

Raspberry packaging

Ripe raspberry fruit shelf-life can be extended to 4 days if stored at 4°C and sealed into punnets using film types 1 or 2.

Fruit contained within various films were scored for taste, firmness, colour, water loss, disease. High score = good; low score = poor; maximum points = 24. Assessments were on fruit pushed to the limits of shelf-life (hence low scores). Punnet treatment Storage Glen Lyon 8 15 Glen Magna

Shelf-life and fruit quality are enhanced by cold storage. Films 1 and 2 were

extended shelf-life

by up to 4 days.

effective and

Acknowledgements

The future

At SCRI we now hope to research the underlying physiology and biochemistry of successful packaging stategies.

For funding this research we thank the Scottish Office Agriculture,

Environment and Fisheries Department, the Ministry of Agriculture Fisheries and Food, Scottish Soft Fruit Growers Ltd., Horticulture Development Council and the European Union.