L-Ascorbic Acid Accumulation in Blackcurrant Fruit (Ribes nigrum L.)

Paul G. Walker¹, Simon D.A. Pont¹, Roberto Viola¹, Robert D. Hancock¹ Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA. United Kingdom. ² IASMA, Via E. Mach 1, I-38010 San Michele all'Adige, Trento, Italy. Rob.Hancock@scri.ac.uk

Scottish Crop 🏼

Introduction

In recent years significant advances have been made regarding the metabolism of L-ascorbic acid (AsA) in plants. Evidence has been presented for the existence of several biosynthetic pathways and more details regarding AsA recycling and degradation have been elucidated¹. In addition, details regarding the biochemical and genetic control of biosynthetic pathway flux are beginning to emerge.

However, many of the studies undertaken to date have used photosynthetic tissues and with the exception of apples2, much less is known regarding the accumulation of AsA in heterotrophic tissues such as tubers and fruits. In the present study the biochemical, physiological and environmental factors affecting AsA accumulation in blackcurrant fruit were examined. Based on current data, a model for AsA accumulation is presented.

Materials and Methods

Plant Material and Growth Conditions

All blackcurrant genotypes were grown outdoors at the Scottish Crop Research Institute, Dundee, Scotland (56°27'N, 3°04'W) and subjected to standard industry fertilisation and pest control regimes. The genotypes used in the biochemical studies; Hedda, Baldwin and 8982-6 cont an average of 0.71 ± 0.21, 1.96 ± 0.09 and 2.58 ± 0.25 mg AsA gFW⁻¹ in ripe fruit. Fruit stages were defined as green 4-8 mm (1), green 8-12 mm (2), green-red (3), red-green (4), red (5) and black (6),

Extraction and Quantification of AsA and Sugars

Blackcurrant fruit were ground to a powder in liquid N₂ and extracted in 5% metaphosphoric acid containing 5 mM TCEP3. AsA was quantified by HPLC using a cation interaction column4.

Sugars were extracted from powdered blackcurrant fruit in 20 volumes of 70% ethanol at 80°C for 1 h. After the removal of ethanol under reduced pressure, sugars were quantified by strong anion exchange HPLC with pulsed amperometric detection⁵

Measurement of AsA Biosynthesis and Turnover

AsA biosynthesis was measured in detached, bisected flowers or fruit using [U-14C]mannose as a substrate as described⁶ with the exception that the buffer solution consisted of 50 mM MES pH 6.5, 300 mM AsA turnover was measured after incubation of bisected flowers or fruit with [1-14C]AsA for 2 h followed by a chase of 24 h. In both cases [14C]AsA was extracted in 5% perchloric acid and quantified by radio-HPI C6

Results

L-Ascorbic Acid is Accumulated Early in Fruit Development

Flowers and fruit of 3 blackcurrant genotypes were harvested throughout development and fruit fresh weight and AsA concentration recorded. The data presented in Fig. 1 shows that all cultivars, regardless of ripe fruit AsA concentration, showed the same pattern of accumulation which occurred only during fruit expansion and had ceased by the time fruit reached stage 3. Although 8982-6 had a higher AsA concentration in ripe fruit, Baldwin fruit contained more AsA per berry due to their larger fruit size.

L-Ascorbic Acid Accumulation is Associated with **Biosynthetic Capacity**

In order to determine if fruit biosynthesis was responsible for AsA accumulation, the incorporation of [U-14C]mannose (an intermediate of the de novo pathway) into [14C]AsA was guantified throughout fruit development. Biosynthetic capacity was highest in flowers and remained high during fruit expansion (stages 1-2) but rapidly declined as fruit ripened further (stages 3-6; Fig. 2). In addition to the developmental correlation between biosynthetic capacity and AsA accumulation, there was also a correlation between biosynthetic capacity in expanding fruit (stages 1-2) and ripe fruit AsA content between genotypes. These data were interpreted to suggest that the major source of fruit AsA is in situ synthesis from imported sugars

Cessation of L-Ascorbic Acid Accumulation is Associated with Increased Turnover

Fruit AsA turnover rates were low (~1% total pool h-1) during flowering and fruit expansion (stages 1-2), increasing to ~3.5% total pool h⁻¹ in ripening and ripe fruit (stages 3-6; table 1). It was concluded that cessation of AsA accumulation occurred through a combination of decreased biosynthesis and increased turnover.

Blackcurrant Fruit Show a Biphasic Pattern of Sugar Accumulation

The ultimate substrate for AsA synthesis in fruit must be sugars imported from other parts of the plant. In order to determine whether substrate limitation might influence AsA biosynthesis suga accumulation was quantified during fruit development. In all genotypes examined, sugar accumulation followed a biphasic pattern (Fig. 3) with an initial accumulation during fruit expansion (stages 1-3) followed by a brief plateau (stages 3-4)

and then a second phase of accumulation (stages 4-6). It was postulated that the first phase of sugar accumulation resulted from starch breakdown and mobilisation while the second phase resulted from translocation of sugars from source leaves

AsA Accumulation in Blackcurrant Fruit is Positively Correlated with Solar Radiation

In order to determine environmental effects on blackcurrant AsA accumulation, historical records of fruit AsA concentration from known cultivars arown in SCRI breeding plots were correlated with different meteorological parameters (rainfall, temperature. sunshine hours, total solar radiation). The most significant correlation observed was that between post-harvest solar radiation (Aug-Oct) and the fruit AsA concentration in the following year (R² = 0.47, Fig. 4). This data is consistent with the hypothesis that greater post-harvest

radiation allows increased accumulation of starch reserves providing a greater substrate pool for fruit AsA biosynthesis in the following year

A Model for L-Ascorbic Acid Accumulation in Blackcurrant Fruit

Summer

Starch reserves

photosynthetically

limited by low

high turnover.

depleted. Leaves fully

developed and exporting

generated sugars. AsA

accumulation in fruit

biosynthetic flux and

Autumn

Fruit have been harvested Photosynthesis continues resulting in starch accumulation. Current work is investigating the link between starch accumulation and fruit AsA concentration in the following season.

References

n Malus. Plant Cell Environ. 27:1309-1320. 2 nhenotyping of berry fruit. Phytochem. Anal. 17:in press

CCCB Voil (2005) Biosynthesis and catabolism of i-ascorbic acid in plants. *Crit. Rev.*, Plant Sci. 24:167-188. yr, C Franck, J Keulemans (2004) Distribution, developmental and stress responses of antioxidant metabolism in Malua. *Plant I* yr, S. Cardon, R. Miemann, R. Di Hancock, 2006) A high-throughun monolithis HPU: method for rapid visianii C phenologiling RD Hancock. S Aberino, S Haupt, R Voia (2006) A high-throughy monolithis HPU: method for rapid visianii C phenologiling RD Hancock. S Aberino, S Haupt, R Voia (2004) Ang-distance transport of t-ascorbic acid in potato. *BMCP Plant Biol.* 4:18. Syre, DPM Lametta, HA Ross, RD Hancock, LVT Shepherd, R Vola, Ma Taylor, HV Davies (2004) Starch metabolism in develop och. D MoRes, S Haupt, R Vola (2003) Synthesis of t-ascorbic acid in the phene. *MRC Plant Biol.* 3:7. one. RD H 5. EJF Soule aria x ananassa) fruits. Physiol. Plant. 121:3

Acknowledgements

an Pitkethly for production of the poster. Funding was provided under Horticulture LINK scheme (MRS/003/02) by sh Executive Environment and Rural Affairs Department, the Biotechnology and Biological Sciences Research Council and the line, the So